Multiscale modeling of femtosecond laser irradiation on copper film with electron thermal conductivity from ab initio calculation
نویسندگان
چکیده
By combining ab initio quantum mechanics calculation and Drude model, electron temperature and lattice temperature dependent electron thermal conductivity is calculated and implemented into a multiscale model of laser material interaction, which couples the classical molecular dynamics and two-temperature model. The results indicated that the electron thermal conductivity obtained from ab initio calculation leads to faster thermal diffusion than that using the electron thermal conductivity from empirical determination, which further induces deeper melting region, larger number of density waves travelling inside the copper film and more various speeds of atomic clusters ablated from the irradiated film surface.
منابع مشابه
Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations
The temperature dependences of the electron heat capacity and the electron-phonon coupling factor are investigated for Au based on the electron density of states obtained from ab initio electronic structure calculations. Thermal excitation of d band electrons leads to a significant (up to an order of magnitude) increase in the electronphonon coupling factor and makes a considerable contribution...
متن کاملTemperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation
The electron temperature dependences of the electron–phonon coupling factor, electron heat capacity and thermal conductivity are investigated for Ni in a range of temperatures typically realized in femtosecond laser material processing applications, from room temperature up to temperatures of the order of 10 K. The analysis is based on the electronic density of states obtained through the elect...
متن کاملThermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process
The thermal conductivity of a nanoscale yttrium iron garnet (Y₃Fe₅O12, YIG) thin-film prepared by a sol-gel method was evaluated using the ultrafast pump-probe technique in the present study. The thermoreflectance change on the surface of a 250 nm thick YIG film, induced by the irradiation of femtosecond laser pulses, was measured, and curve fitting of a numerical solution for the transient hea...
متن کاملModeling crater formation in femtosecond-pulse laser damage from basic principles.
We present the first fundamental simulation method for the determination of crater morphology due to femtosecond-pulse laser damage. To this end we have adapted the particle-in-cell (PIC) method commonly used in plasma physics for use in the study of laser damage and developed the first implementation of a pair potential for PIC codes. We find that the PIC method is a complementary approach to ...
متن کاملTailoring the Energy Band Gap of Transition Metal Doped TiO2 Thin Film
Water splitting for hydrogen production under sunlight using TiO2 as photo catalyst provides a better route for solar energy and attracts the attention of many researchers. The photo catalytic activity of TiO2 under sunlight irradiation depends on the band gap energy. The transition metal doped TiO2 shows an edge over TiO2 in optical absorbance and photo catalytic activity. Thin film of Cr dope...
متن کامل